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Lattice calculationa of heavy quark systems provide very good mea~uxe8 of the lattice spacing, a key element in 
recent determinations of the strong coupling constant using lattice methods. They also provide excellent testing 
grounds for lattice methods in general. I review recent phenomenological end technical developments in this field. 

1. INTRODUCTION 

Present and future lattice calcuiations involv- 
ing b and c quarks include some of the most im- 
portant applications of lattice gauge theory to 
standard model physics. These include the heavy 
meson decay constants, the BB mixing ampli- 
tude, and various semileptonic decay amplitudes, 
which are alI crucial in extracting CKM angles 
from experimental data. They also include the 
extraction of a, from the charmonium and bot- 
tomonium spectra. 

Bound states of heavy quarks and antiquarks 
(quarkonia) have another crucial role to play in 
the development of lattice gauge theory: they 
provide systems in which the estimation of the 
errors inherent in current lattice calculations can 
be done in a more reliable and robust way than 
is possible for the light badrons. The reason is 
that the quarks in these systems are relatively 
nonrelativistic. Coulomb gauge wave functions 
calculated on the lattice may be used to aid in 
the estimation of finite volume and finite lattice 
spacing errors, and of the effects of quenching. 
We have a much better idea of what to expect 
in lattice calculations of these systems since po- 
tential models may be used to obtain the leading 
behavior in u’/c*.[l] 

Chris Sachrajda and I will split the subject of 
heavy quark physics in these proceedings. His re- 
view [3] will concentrateon the part of the subject 
which involves the weak interactions. X~line will 
concentrate on the part which does not. 

‘Review presented at Lattice 92, Amsterdam. Sept. 1% 
II). 1992. 

2. LATTICE FORMULATIONS OF 
HEAVY QUARKS 

When the lattice spacing a is smaller than the 
Compton wave length of the quark l/m, the stan- 
dard relativistic action of Wilson may be used. 
Cutoff effects may be removed by taking the cut- 
off l/a to infinity. The bare lattice action may 
also be viewed as an effective field theory of QCD 
at the cutoff scale. Cutoff effects in an effective 
field theory are removed by adding higher dimen- 
sion interactions to the bare Lagrangian while 
keeping the cutoff fixed. To remove the effects 
of the cutoff to a finite order in a, a finite number 
of interactions may be added to the bare lattice 
Lagrangian. When aAgc~ < 1, perturbation 
theory may be used to calculate the required co- 
efficients of the new operators.(4] The ability to 
remove cutoff effects perturbatively will probably 
be spoiled eventually. perhaps at a small power of 
a due to effects presently not understood, almost 
certainly at a relatively large power of a due to 
instantons. 

The dynamical scales in bound states are small 
compared to the fermion mass in QED and in 
QCD for the c and b quarks. It is often advan- 
tageous in these systems to formulate the field 
theory nonrelativistically as an expansion in l/m 
[5-81, keeping the cutoff at or below m. The non- 
leading terms in nonrelativistic expansions have 
dimension higher than four. Loop corrections in 
these effective field theories diverge if the cut- 
off is removed. Cutoff effects must be removed 
by adding higher dimension interactions to the 
Lagrangian or by raising the cutoff to the new 

e Opsrsted by Universities Research Association Inc. under contract with the United Slates Department Of Energy 



physics scale (m), switching to the relativistic, 
renormalizable version of the theory, and then 
taking the cutoff to infinity. 

When the kinetic energy of the heavy quark is 
small compared to the typical interaction energies 
(as it is in bound states containing a single heavy 
quark), the kinetic energy may be treated aa a 
perturbation. In thii static appmzimnfion [7, 61, 
the lowest order fermion action is just 

L *t&tic = Vi%4 (1) 

and the unperturbed quark propagator is just the 
timelike Wilson li”e.In the general case, including 
quark&a. the lowest order potential and kinetic 
terms of the Lagrangian of Nonnhtititic QCD 
(NRQCD) 18, 51 (the terms on the first line of 
Equation 2) must be included in the unperturbed 
Lagrangiau. 

D= 
csroco = flIiDt + G 

+ $B}$ 

+ (2) 

Higher order terms in & may be added as per- 
turbations. 

In processes such as the semileptonic decay of 
heavy-light mesons, in which one heavy quark de- 
cays into another lighter (but still heavy) quark 
with a high velocity relative to the first, it is pos- 
sible. and useful, to formulate the static approti- 
mation and nonrelativistic QCD as expansions in 
the small internal quark momentum around some 
large, external meson momentum.[9] Lattice im- 
plementationsof this idea have bee” proposed [lo] 
and are reviewed by Sachrajda.[3] 

2.1. The improvement program for Non- 
relativistic QCD 

In a recent paper [ll], Lepage et al. have sys- 
tematically examined the improvement program 
for NRQCD with the goal of reducing systematic 
sources of error from all sources to under 10%. 
This program involved the following elements: 

1) Since INRQCD has been formulated as a no”. 
renormalizable effective field theory, cut-off ef- 
fects are removed not by taking the cut-off to in- 
finity, but by adding additional operators to the 

bare Lagrangian (the dots in Eq. 2). The infinite 
number of possible operators must be ordered ac- 
cording to expected size of their effects on the 
physics. For heavy-light systems, the operator 
ordering is simply a” expansion in l/m, thrt is, 
in the dimensions of the operators. For heavy- 
heavy systems like quarkonia, the expansion is 
complicated by the presence of large quark vc 
locities which do not fall to zero with the quark 
maes. Operators with the same dimension (such 
u g and &u. B ) are suppressed in their ef- 
fects on the phyeica by different powers of v (by 
U* and u4, respectively, in this case). 

2) Once the operators required for a give” accu- 
racy have been established. their coefficients must 
be determined by requiring that the NRQCD La- 
grangian reproduce the Green’s functions of ordi- 
nary QCD to this accuracy. 

3) Discrete forms of the required operaton 
must the” be defined. As with light quark ac- 
tions, finite a errors must be estimated. If “ec- 
essay, correction operators [4] must be added to 
the action. 

4) The coefficients of the operators are modiiIed 
by quantum effects. Many corrections have bee” 
calculated in mea” field theory.1111 The correc- 
tions for the quark energy shift, mass renormai- 
ization, and wave function renormalization have 
been calculated in full one-loop perturbation the- 
ory.[l2) Deviations between the mean field and 
one loop results are rather small. from O-10%. 

The result is a systematic correction program 
in u, a, and a,. The correction operators in u 
and a may be included directly in the simulation 
action, or evaluated as perturbations using lattice 
or potential model wave functions. 

2.2. A New Action for Four Component 
Fermions 

Because coefficients of higher terms in the 
NRQCD Lagrangian such as g are explicit func- 
tions of l/m, the quantum corrections described 
in 4) above are also explicit functions of l/m. 
These begin to diverge as ma is reduced below 
a value of order one, making the “onrelativistic 
expansion impractical. The Wilson action like- 
wise has been thought to have finite lattice spac- 
ing errors of order ma which blow up as ma is 
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raised above one. Since the masses of the b and 
c quarks are such that ma is often O(1) at cur- 
rent lattice spacings, calculations of such crucially 
interesting quantities as the heavy meson decay 
constants fs and f~ have often involved awk- 
ward interpolations between results in the static 
approximation and results using Wilson fermions 
through a region where neither approximation is 
well behaved.[3] While such an approach is proba- 
bly workable, it would clearly be desirable to have 
a method for lattice fermions which did not begin 
to break down right in the region of interest. 

To approach such a method, we consider a lat- 
tlce versmn of C,.,,, with a few minor modifica- 
tions. Like Wilson fermions (ti), the fermions of 
NRQCD contain four components per site: a two- 
component quark field (4) and a two-component 
antiquark field (x). The bare mass is conven- 
tionally omitted in NRQCD calculations, but we 
are free to leave it in the theory. The usual Dirac 
coupling between quarks and antiquarks is absent 
(having been transformed into higher derivative 
interactions by the Foldy-Wouthhuysen transfor- 
mation), but we may add back a sufficiently sup 
pressed amount of this interaction without spoil- 
ing the theory. We thus consider the following 
Lagrangian: 

c = c$.(c* A; + mo - + c A’A;)$, 

+ c3 @’ x UiAiX” 

+ x*(-q A: + mo - : c A;A;)x. 

+ Q x- 1 ~iAi&. (3) 

When cl = 1 (times a correction factor when 
ma > l), cr = A. and CJ is negligible. it is a 
good Lagrangin for NRQCD. The point of writ- 
ing the NRQCD Lagrangian in this particular 
form is that the action becomes precisely the stan- 
dard Wilson action with the choice of parameters 
cl = ca = CJ = 1. It is thus possible to adjust the 
parameters in such a way that as rno is reduced, 
instead of blowing up, the theory turns smoothly 
into the Wilson theory. 

It is illuminating to expand the equation for 

Wilson propagators nonreiativistically when the 
mass is large. After normalizing the fields by 

o*” 1131 (not 7k 8s is conventional) one may 

6no = [-E +M + (1 -VA,,) (4) 
1 1 -- - 

( ,2 mo + (I+ m&2+ mo,> T(Ai)21mn. 

where & is the energy eigenvaiue obtained from 
the transfermatrixand M = E+,, = ln(l+mo). 
This is a lattice Schr6dinger equation not un- 
like the one obtained from NRQCD, but it has 
some unusual features. Most important. the twn 
“masses” in the equation. M = In( 1 + ma) and 
& = k + ~l+mo,‘~2+m~,, are completely differ- 
ent. If M is used to fix the fermion maw when 
am > 1, the dynamically more important mau 
condition t3E/Opz = i-m will be completely ineor- 
rect. 

Kronfeld showed in hi talk at this conference 
[14] that the two maws can be put back into 
agreement with the use of the action 

s = Cl-Ati” 
n 

+ w&(1 - roN.L,o@n+i, + kc. 

+ 6. c &(I - yi)Un,iq~n+; + kc.1 (5) 

Thus. it seems that an action closely related to 
the Wilson action is a member of the class of 
actions suitable for NRQCD. One can go even 
further. In NRQCD and in the static approxi- 
mation. .M plays no dynamical role. It can be 
ignored. and is conventionally thrown away. This 
suggests that the standard Wilson action itself 
can be used when am > 1 as long as M is ig- 
nored and X/8p* = & is used to fix the quark 
mass, as is done in NRQCD. 

This proposal is obviously correct in free field, 
where we can calculate the behavior of quark 
propagators exactly to see that the proposed in- 
terpretation makes sense. It is certainly correct 
in mean field theory, too. Mean field improve- 
ment of these fermions, as of Wilson fermions. is 
simply the absorption of a %ean link” ug (see 
Appendix B) into an effective i e uo~ and then 
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proceeding as with free field theory. [A plausi- 
ble estimate of the mean link in this context is 
probably ue w l/&z,.) It remains to be shown 
whether the theory is somehow spoiled by renor- 
malization. 

Perturbatively, Green functions must be ex- 
panded in pz and 0,. Each term in the expansion 
is an explicit function of the quark mass, since the 
theory must be solved exactly in ma. (The is also 
the case for the loop corrections of NRQCD.[12] 
If these functions become singular or badly be- 
haved in some way, the theory could conceivably 
break down. The one loop perturbative correc- 
tions contain all of the ugliest features of Wilson 
and NRQCD perturbation theory simultaneously, 
and have only been begun. There is, however, one 
numerical calculation by El-Khadra [15] indicat- 
ing that nothing too surprising occurs. The one- 
loop correction to the local current normalization 
for Wilson fermions with the naive normalization 
is (161 

wFw = l 2x(1 - 0.1792)’ (6) 

The correct normalization with mean field im- 
provement is 

~~ww = (I- .& _ ()06gz)’ (7) 

The remaining perturbative correction, 0.06g2, 
becomes an explicit (so far uncalculated) function 
of m (or K) in the new formalism which must not 
become singular if the theory is to make sense. 

Fig. 1 shows Eqs. 6 (upper curve) and 7 (lower 
curve) along with a numerical calculation of the 
quantity at two values of IC (165z32 lattice, p = 
5.9). It can be seen that for thii quantity, not 
only is the unknown function of m not singular, 
it is approximately equal to 1. 

Putting the new action on a secure footing will 
ultimately require: 1) determination of the bare 
parameters of the action with mean field the- 
ory and full perturbation theory, 2) nonpertur- 
bative tests of the perturbative results, and 3) 
phenomenological tests of the resulting action in 
calculations of well understood physical quanti- 
ties. Not much of this program has yet been ac- 
complished. However, as argued above, at large 

0.10 0.12 0.14 0.16 

Figure 1. Normalization of the local vector cur- 
rent as a function of ix. 

values of ma, the new action (and even the Wil- 
son action suitably reinterpreted) can be viewed 
simply as unusual members of the general claa of 
lattice actions proposed by Lepage and collabora- 
tars for NRQCD. Quite a bit is now known about 
the action for NRQCD. The discussion in points 
1) and 2) of Sec. 2.1 on operator classiiication is 
valid for any method for treating heavy quarks, 
including this one. The fact that the mean field 
corrections discussed in 4) reproduce the mass- 
dependent one loop corrections very well is en- 
counging. 

Care will clearly be required in formulating nor- 
malization conditions which capture the most irn- 
portant physics in both the relativistic and non- 
relativistic regions. (Identifying OE/ap2 rather 
tha.7 M as the fundamental mass condition is UT- 
ample number one of these.) 

3. PHENOMENOLOGY OF THE J/tl, 
AND T SYSTEMS 

Like alI phenomenological lattice cdculations, 
calculations of the properties of heavy quark sys- 
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terns serve a variety of purposes. Quantities 
which are well understood experimentally, but 
which are very sensitive to lattice approxima- 
tions are good tests of lattice methods (Sec. 3.3). 
Quantities for which the lattice approximations 
are well understood may be used to extract in- 
formation about the standard model (Sec. 3.1). 
A further purpose for lattice calculations is the 
delineation of the limits and the reasons for the 
successes of earlier models of hadrons (Sec. 4.3). 

I will discuss calculations in the 1L and Y sys- 
tems by Davies, Lepage, and Thacker [l?] using 
NRQCD, and calculations in the rL system by 
the Fermilab group using Wilson fermions rein- 
terpreted as described in Sec. 2.2 [18-2?], and 
by UKQCD using Wilson fermions 1231. (See also 
1241.) Both groups studying the J/e system used 
the 0(a) correction term 

6C = -ig~~Cg.Fu,$ (8) 

of Sheikholeslami and Wohlert 1251. UKQCD 
used the tree level coefficient c = 1. The Fermi- 
lab group used a mean field improved coefficient 
c = 1.4 (see Appendix B). 

3.1. lS-1P splitting 
.An excellent determination of the lattice spac- 

ing in physical units is provided by the spin av- 
eraged splitting between the lowest angular mo- 
mentum (I = 0 and I = 1) levels of the W and 
T systems. (In the charm system. for example. 
JIh* - (3& + &)/4 = 458.6 f 0.4 MeV.) The 
values of the lattice spacing obtained from this 
splitting do not differ dramatically from those ob- 
tained from other quantities, such as the p mass 
[2Gj or the string tension 1271. It is the possi- 
bility of making improved uncertainty estimates 
that makes thii an important way of determin- 
ing the lattice spacing. In quarkonia. error es- 
timates may often be made in several ways: by 
brute force (e. g., by repeating the calculation 
several lattice spacings), by phenomenological ar- 
guments. and by direct calculation of correction 
terms. Since determination of the lattice spacing 
is one of the key components of the determination 
of the strong coupling constant from low enerm 
physics. it is important that these uncertainty es- 
timates be made rock solid. 

Preliminary results for this mass splitting were 
reported last year by the Fermilab group (18, 191 
and by Davies, Lepage, and Thacker 1171. This 
year, El-Khadra (211 reported further work done 
to check the corrections and error estimates given 
in Ref. (181. In [18], uncertaintiesdue to an incor- 
rectly known quark mass and to O(a) errors aria- 
ing from an imperfectly determined coefficient c 
in the O(a) correction to the Lagrangian (Eq. 8) 
were taken to be less than 1% and omitted fmm 
the table of errors on the basis of the phenomena. 
logical arguments. (The splitting is expected to 
be insensitive to small errors in the definition of 
the quark mass since it is almost identical in the 
uj and T systems. Likewise, in quark models the 
contribution of the d. B interaction, which domi- 
nates 6C nonrelativistically, to the spin averaged 
splitting is zero.) These arguments were checked 
this year by repeat calculation at several values 
of the parameters and found to be correct within 
statistical errors. 

The O(a*) errors were argued to be small be- 
cause repeat calculations at 0 = 5.7, 5.7, and 
6.1 yielded almost the same result for ~1(5 GeV) 
(see next section). An attempt was made to car- 
rect for the small variation observed by extrap 
elating to zero lattice spacing in a2. This ex- 
trapolation is not completely satisfactory, since 
the small a functional form is a messy combina- 
tion of O(a’) errors and perturbative logarithms. 
The way to improve this result. which has not 
yet be done. is to follow the example the NRQCD 
group (li] and evaluate directly the contributions 
of the known correction operators to the splitting, 
thereby eventually obtaining zero measurable de- 
pendence on the lattice spacing. This group evd- 
uated the correction of the operators perturba- 
tively using the wave functions of the Richardson 
[28] potential model. For the T at 3 = 6.0, for ex- 
ample, they obtained the rather small corrections 
shown in Table 1. Wave functions directly calcu- 
lated by lattice gauge theory could also be used, 
eliminating the need for potential models. They 
are easy to calculate to high statistical accuracy. 
Fig. 2 shows the Coulomb gauge wave function 
of the J/G meson calculated on a 24’ lattice at 
0 = 6.1. Statisitical errors are negligible at small 
separations. 
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Figure 2. The wave function of the J/e meson. 
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NRQCD corrections to the lP-1s splitting in the 
T system. Finite lattice spacing corrections are 
for 0 = 6.0. 

Simiiarly, the estimate of the finite volume cur- 
rection needs to be bolstered by calculating the 
meson Coulomb gauge wave functions on the lat- 
tice, and then calculating the overlap integral of 
the wave function with its periodically reflected 
image. 

3.2. Determination of a, from the lS-1P 
Splitting 

The most recent determinations of a. from 
the charmonium and bottomonium spectra us- 
ing NRQCD [l?] and modified Wilson fermions 

[22] have error bars bracketing the region u, = 
0.103 - 0.114 GeV. They are somewhat below, 
but consistent with the world average given in 
the review of QCD in the 1992 particle data 
book. They are inconsistent with the most recent 
LEP determinations, which are around 0.120 and 
above.[29] 

The determination of a, from the lS-1P split- 
ting currently consists of three separate elements: 
the determination of the lattice spacing, the de- 
termination of a physical coupling constant at a 
scale measured in lattice spacing units, and, for 
the time being, a correction for the absence of 
light quarks. As discussed in the previous set- 
tion, the uncertainties in the determination of a, 
arising from the determination of the lattice apaf- 
ing seem to be in good shape right now, and the 
path is clear to making them very solid. 

3.2.1. Determination of the coupling con- 
stant. 

To determine the running coupling constant, 
one would like to combine the determination of 
the lattice spacing discussed above with a non- 
perturbative calculation of a physically defined 
coupling constant, for example defined from the 
static quark potential at a given, fixed momen- 
tum transfer like 5 or 10 GeV. 

Since the largest cutoff momenta for the exist- 
ing lP-1s splitting calculations was */a r( 7.5 
GeV, it was not possible in the existing calcula- 
tions to determine the continuum limit of a phys- 
ical coupling defined at short distances. 

In Ref. [la] a mean field improved perturbative 
relation, (Eq. 27 in Appendix B) was used to ob- 
tain a. renormalized coupling from the bare lattice 
coupling. Thii relation was tested over the past 
year on short distance Wiion loops.(30] It did 
well, but not perfectly: the loops calculated by 
Monte Carlo were systematically a few per cent 
high. Thii suggests that Eq. 27 fixes most but 
not all of the pathological relation between the 
bare lattice coupling constant and physical cou- 
plings, and that it is better tn obtain physical cou- 
plings from short distance quantities calculated 
nonperturbatively. Using short distance Wiion 
loops for thii purpose (for example, via Eq. 28) 
raises the values of the renormalized couplings by 
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a few per cent river those reported in Ref. 1181. 
It remains to be determined how much cnu- 

plings defined from continuum quantities differ 
from those defined from short distance quantities 
like the log of the plaquette. There is some rea- 
son to expect that thii difference is small. The 
second order corrections to the short distance lat- 
tice static potential are within a few per cent of 
the continuum comctions.[31] Likewise, Creutz 
ratios of Wilson loops up to six by six are quite 
well behaved when expanded with a coupling de- 
fined from Eq. 28.[30] 

The Monte Carlo calculation of the static quark 
potential at a separation of one lattice spacing 
agrees to very high accuracy with perturbation 
using the coupling of Eq. 28. (See Sec. 4.1.) 
Therefore, a coupling constant obtained from the 
very short distance static potential will give re- 
sults almost identical to those using Eq. 28. A 
phenomenologicalmethod for estimating the con- 
tinuum coupling constant defined by the potential 
using short distance data has been proposed by 
Michael.[32] It has been used by UKQCD [33] and 
by Bali and Schiing.[27] It yields results which 
are quite close to those obtained with Eqs. 27 
and 28, and therefore to those which would be 
obtained directly from short distance lattice po- 
tential itself. 

A program to calculate explicitly a continuum 
coupling constant using finite size scaling has 
been proposed by Liischer et al.[34] To select the 
particuiar coupling to focus on. they propose the 
criteria that it: 1) be defined nonperturbativcly, 
2) be calculable in perturbation theory, 3) be cal- 
culable in Monte Carlo simulations. and 4) have 
small. controllable lattice artifacts. These lead 
them to propose the response of the QCD vacuum 
to aconstant background color-electric field tode- 
fine the coupling constant. The more phenomeno- 
logical choice of the static potential has poorer 
signal-to-noise properties in Monte Carlo calcula. 
tions approaching the continuum limit. and (they 
tell us) more difficult higher order perturbation 
theory. An SU(2) calculation has been completed. 
which yields results similar to those obtained with 
Eq. 27. An SU(3) calculation is in progress. 

3.2.2. Correction for the effects of sea 
quarks. 

Thii is the greatest source of uncertainty in the 
results quoted above. This correction is the most 
phenomenological, and has the greatest likelihood 
of having a problem. Over the next few years, it 
will be removed by direct inclusion of the effects 
of sea quarks. 

The attempt to estimate the effect that the ab- 
sence of sea quarka has on thii result is based on 
three assumptions. They are, in order of decrees- 
ing rigor: 

l When certain physics quantities are used to 
tune bare parameters in the quenched ap 
proximation, the most important terms in 
the effective Lagrangian at the dominant 
energy scale for those quantities are given 
correctly. The effective action at other en- 
ergy scales including the scale of the lat- 
tice cutoff wiU be somewhat incorrect. In 
particular, if the effective coupling constant 
at the physics scale approximates that of 
the real world, the effective coupling at the 
short distance cutoff will be a bit small. 

. The most important term in the effective 
action for quark&a is the static potential. 
The phenomenological success of potential 
models indicates that this assumption may 
be valid to around 25%. It is this assnmp- 
tion. which is certainly not valid for the 
light hadrons. that leads us to dare tn try 
to make this correction for the charmonium 
system when we would not try it for the 
light hadrons. 

l The effects of light quarks on the static po- 
tential may be estimated by fitting char- 
monium data with a QCD based poten- 
tial model such as the Richardson potential 
once with the correct, n, = 3. 0 function in 
the potential and again with the quenched, 
nf = 0, 0 function. 

The final assumption is certainly a good one 
at short distances. which are responsible for most 
of the difference in the evolution of the coupling 
from the middle distance charmonium physics 
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scaie down to the lattice cutoff scale. It is 
also reasonable at the less relevant large distance 
scale, since the lattice quenched string tension 
and the string tension of Regge pbenomenology 
are comparable. If, however, tight quarks have 
a much greater effect on the potential in middle 
distances than they seem to at large and at small 
distpp antes, the assumption would fail. 

The naive expectation for the size of the COT- 
rection is 

gf=o _ p=3 

po”,‘P - 20%. 

In Ref. [IS], a perturbative calculation was used 
to bound the plausible size of the correction. This 
year the estimated correction was checked (221 by 
fitting the chammnium spectrum with a poten- 
tial twice: once using a potential with the correct 
0 function and once using a potential with the 
quenched p function. (See Sec. 3.3) The result 
was compatible with the one in Ret [Ml. This, 
however, is not so much an independent check of 
the previous estimate as another quantification of 
the assumption that sea quarks have no more dra- 
matic effects on the potential at middle distances 
than they seem to at large and small distances. 

cutoff. They thus differ from calculations of un- 
ruly hadrons in collision. which insist on interact- 
ing on a wide range of momentumscales, piling up 
large logarithms from a nasty variety of sources. 

The aspect of the current determination of (I, 
which makes it no better than any other editing 
determination is the use of potential model argu- 
ments to estimate the effects of the absence of sea 
quarks. This is quite analogous to, for example, 
the phenomenological treatment of higher twist 
and fragmentation effects in determinationsof a, 
in deep inelastic scattering. All of the existing 
determinations have some phenomenological as- 
sumptions built into them. The difference is that 
the potential model estimate of quenched correc- 
tions will certainly be eliminated by brute com- 
puter force (if not by the use of more intelligent 
methods) over the next few years, resulting in a 
determination far more accurate than any of the 
existing ones. 

3.3. Hype&x Splitting and Leptonic 
Width 

These two quantities are very straightforward 
to calculate on the lattice, and are good pht 
nomenologiczd tests of how well we understand 
the parameters of the quark action. The hyper- 
fine splitting An(J/+ - 7.) and leptonic decay 
amplitude V+ G mi/f+ have been calculated in 
the J/QII system by the Fermilab group and by 
UKQCD. They have been calculated in the T sys- 
tem by Davies. Lepage, and Thacker.[l7] 

3.2.3. Future prospects for determining a, 
Errors in the determination of the lattice spac- 

ing are already in good shape. 
The accuracy in the determination of the cou- 

pling constant needs further examination. but the 
calculations of Ref. [30] suggests that the accu- 
racy to be expected of lattice perturbation theory 
is greater than that expected of QCD perturba- 
tion theory in hadronic phenomenoiogy. In Ref. 
[30], discrepancies of about a* were typically ob- 
served in comparisons of first order perturbation 
theory with hionte Carlo calculations, and dis- 
crepancies of about a3 in comparisons of second 
order perturbation theory. This amounts to only 
3-4% for calculations at the lattice cutoff at mod. 
crate Vs. In contrast. in QCD phenomenology, 
an accuracy of 10% is often taken to be opti- 
mistic. One difference may be that the lattice 
calculations of most interest are often quadrati- 
cally divergent integrals dominated by momenta 
of the order of the relatively well-defined lattice 

The potential model formula for the hyperiine 
splitting is [l] 

Am(J/ti - r/c) = (9) 

It arises from a coupling of the spins of the quarks 
to transverse gluons. It therefore should be ex- 
tremely sensitive to the value of the correction 
coefficient c. (It is not clear a ptioti whether to 
expect strong sensitivity to the quark mars. since 
]U(O)l’ should rise with the quark mass.) 

The leptonic width to leading order is 

r.. = y,*(o),2 

Nonrelativistically, the leptonic decay amplitude 
is therefore simply the wave function at the origin, 
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V(O), properly normalized. This quantity should 
be quite sensitive to the mass of the quark. 

Before comparing existing lattice results with 
experiment, we need to estimate the accuracy 
to expect in the quenched approximation. Both 
quantities are proportional to 1*(0)1*, the prob- 
ability for the quarks to be at the same point 
(within uue Compton wave length, say) and so 
are obviously short distance quautities. With iat- 
tice parameters tuned to obtain the correct lP-1S 
splitting, the coupling constant and potential at 
short distances will be too weak. An analysis like 
the one referred to in Sec. 3.2.2 yields 

a?(%) 

ub”‘(m,) 
= 0.81 f 0.06 (11) 

The incorrect weakness of the quenched po- 
tential at short distance may also yield a weak- 
ened wave function at the origin. El-Khadra has 
checked for this effect [21, 221 using the Richard- 
sou potential 

4n 1 - 
“(~z)=c~~~)q?ln(l+q~/Ar) ’ (12) 

where pp!) = 11 - 2n,/3 . Fitting the charmo- 
nium spectrum with unce with n, = 3 in the p 
function parameter, and again with nf = 0, she 
found that, indeed, The ratio of the wave func- 
tions at the origin was 

W)(O) 
- = 0.86 
W(0) (13) 

This reduces our expectation for the hyperfine 
splitting from the experimental result Am(J/$ - 
‘lJXP = 117.3 MeV to around 

Am( J/G - ~,)~ucacbd z 70 MeV (14) 

These considerations reduce our expectations fur 
leptouic matrix element by a smaller amount, 
from the experimental result T = 0.509 
GeV3jZ to 

I~~“enchcd = 0.438 GeV3/r (15) 

The results of UKQCD and Fermilab for the 
hyperfine splitting are shown in Fig. 3. UKQCD 

150 1,I, II/I ,,I, ,,,, 

lI’~~‘I”‘~l’~~~l~~~~l I 
0.0 0.2 0.4 0.6 0.6 

a2 (GeV-") 

Figure 3. Am(J/$ - qc) calculated by UKQCD 
(diamond) and Fermilab (squares) compared with 
the physical result (upper star) and an estimate 
of the quenched corrected result (lower star). 

set the value of the quark mass to obtain the ex- 
pected energy eigenvaiue in the transfer matrix. 
In light of the arguments on the interpretation of 
Wilson fermions at large quark masses in Sec. 2.2, 
the Fermilab group took this as unreliable and at- 
tempted to fix the quark mass by demanding that 
the leptonic width be correct. The UKQCD result 
is slightly below the result expected on the ba- 
sis of the quenched correction. This is consistent 
with the mean field expectation that quantum 
corrections boost the required value for the CD- 
efficient of the correction term. Their results are, 
however, much closer to the physical answer than 
earlier Wilson fermion calculations with no O(a) 
correction.[35] The Fermilab results are slightly 
above the quenched expectation, but perhaps not 
very significantly in tight of the uncertainties in 
the quenched correction and the statistical errors. 
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Figure 4. The heavy quark potential, calculated 
on the lattice in the quenched approximation. 

4. THE STATIC QUARK POTENTIAL 

High accuracy results for the static quark 
potential were reported this year by Bali and 
Schiig [36, 271 and by UKQCD [33]. Fig. 
4 shows the potential calculated by Bali and 
Willing in the quenched approximation on a 32’ 
lattice at p = 6.4. The solid line is the fit to a 
Coulomb plus linear potential 

V(R) = v, - 0.277(28)/R + O.OlSl(S)R, (1’5) 

which fits quite well for R > 2fi. Comparison 
of results on 16’ with results on 32’ lattice indi- 
cated that finite volume results are small. A plot 
of results from p = 6.0, 6.2, and 6.4 with physi- 
cal units set by the string tension indicates good 
scaling behavior. 

4.1. Short distance behavior. 
At such a large 0 we should expect the short 

distance part of the potential to agree very well 
with perturbation theory, and this is the case. 
I checked the value of V(1) given in F&f. 1271 
against perturbative results for 32’ lattices sup 
plied by Un HeUer 1371. Using the “measured” 
coupling constant defined by Eq. 28, perturba- 
tion theory agreed with the Monte Carlo data to 
within about I%, perhaps fortuitously accurate, 
but still impressive. (This incidentally illustrates 

that the potential is a natural candidate on the 
lattice as well as in the continuum to define im- 
proved coupling constants. The coupling of Eq. 
28 was suggested mostly because the plaquette is 
easy to measure and universally available.) 

Since perturbation theory agrees so well with 
the Monte Carlo calculation of the potential, and 
since perturbation theory implies a coupling con- 
stant risiig with increasing R, it would be inter- 
esting to attempt to fit the data with an asymp 
toticdly free Coulomb plus linear potential. The 
size of the fit Coulomb term (0.277(28)/R) is 
quite close to the subleading long distance behav- 
ior of the potential (n/(12R) = 0.262/R). How- 
ever these two similarly-sized effects have nothing 
to do with each other, and we are not guaran- 
teed that, for example, the perturb&v= Coulomb 
term does not rise above 0.28 before the poteu- 
tiai settles back down to its asymptotic form. A 
fit with an asymptotically free Coulomb plus lin- 
ear potential, for example a modified Richardson 
potential 1381, might help to start exploring the 
extent to which the data support or rule out such 
speculation. 

It is easy to convince yourself with a ruler that 
values of the string tension obtained by the fit are 
completely plausible. However, if the changeover 
from the perturbative Coulomb potential to the 
nonperturbative long distance 1/R term is more 
complicated than we hope, a larger than expected 
middle distance Coulomb term could be contam- 
inating the obtained string tensions more than is 
obvious from the current analysis. 

4.2. Long distance behavior. 
The good scaling of the potential when the 

physical scale is set by the string tension haa al- 
ready been mentioned. Good asymptotic scaling 
of the string tension in terms of a physical cou- 
pling such as A= ia also obsemd in the new 
data (Good means to perhaps 20%.) Folklore 
to the contrary was based on the the search for 
scaling in terms of the bare lattice coupling con- 
stant. The bare coupling has a highly patholog- 
ical, but reasonably well-understood relationship 
to well-behaved physical coupling constants. It 
was pointed out long ago [39, 401 that decent 
scaling is observed in terms nf an effective cou- 
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Figure 5. fi/A, as a function of the lattice 
spacing. The upper curve was obtained from the 
bare coupling constant. The lower curve was ob- 
tained from a” effective coupling constant. 

pling constant defined from the plaquette. It was 
emphasized in Ref. [30] that such coupling co”- 
stants are simply very close relations of the famil- 
iar physical coupling constants such as ay and 
YMS of perturbative QCD. 

Fig. 5 (from Ref. 1401) shows new and old data 
for @/A= plotted as a function of aA= The 
upper curve was obtained via the bare coupling 
constant. The muck better behaved lower curve 
was obtained via the effective coupling 

u 
e 
,, = 3(I - SWV) 

4rr (17) 

(Ref. [30] advocates Eq. 28, the logarithm of 
Tr(U), for this purpose on the grounds that log- 
arithms of Wilson loops have better perturba- 
tive behavior than the loops themselves.) Only 
about 20% deviation from asymptotic scaling is 
observed over the range of the data. Part of that 
deviation is certainly perturb&w, since the “se 
of another reasonable perturbative scheme, Eq. 
28. changes the amount of deviation to 10%.[30] 

Figure 6. The lattice quenched heavy quark po- 
tential (top curve) and the potentials of the Cor- 
nell model and the Richardson model. 

The fact that the ratio of the deconfinement tem- 
perature to the square r”ot of the string ten- 
sion scales better than G/A= is another in- 
dication that the deviation is m”re likely to be 
connected to the determination of the coupling 
constant than to the string tension. Because the 
short distance behavior is a mixture of pertur- 
bative logarithms and O(a*) errors, the extrapo- 
latio” in a ia not completely satisfactory and it 
is important to sort the origin(s) of the d&rep 
ancy: perturbation theory, O(a2) errors. or mea- 
surement errors. However, the downward trend 
seems clear and the estimate 

GfAK = 1.75 f 15% (18) 

seems reasonable. 

4.3. Comparison with potential models. 
One useful task of first-principles calculations 

is to support or destroy earlier phenomenologies. 
For example, it would he “ice to be able to un- 
derstand if there is a reason that nonrelativistic 
quark models for the light hadrons work ““rea- 
sonably well. It is morestraightforward to put the 
success of potential models of heavy quark sys- 
tems “” a rigorous footing using lattice methods. 
These systems are nonrelativistic and it is not 
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surprising that a nonrelativistic treatment yields 
rather accurate results. 

In Fig. 6 the potential obtained by Bali 
and Schilling ia compared with the potentiala of 
Eichten et al. [41] and Richarson in the region 
0.1 fm < R < 1.0 fm. The string tensions of the 
lattice and the phenomenological potentials are 
similar, but the Coulomb term required by phe- 
nomenology is about 1.8 times as large as that 
yielded by the quenched lattice, seemingly a large 
discrepancy. The phenomenological potential is 
very well known in this region between 0.1 and 1.0 
fm. Fits to the spectra of the charmonium and 
bottomonium systems with a wide variety of plau- 
sible and implausible functional forms yield po- 
tentials which differ by only a few per cent in this 
region. On the other hand, the quenched lattice 
potentials are also rather convincing, especially 
at short distance, so what accounts for the dif- 
ference? First, we expect the quenched Coulomb 
coupling to be a bit smaller than the true QCD 
coupling constant at short distances because of 
the incorrect P function of the quenched approx- 
imation. (See Sec. 3.2.2.) This effect is in the 
right direction and is expected to be of order 

p=o _ on,=3 

&, %I” -20%. 

Second. the phenomenological potentials clearly 
parameterize some of the effects of higher order 
relativistic corrections. These are roughly ex- 
pected to be of order u2/cz m 25% for charmo- 
nium. Some of these clearly have the effect of 
strengthening the attraction of the quarks. but 
a complete analysis of the spin-independent rel- 
ativistic corrections in potential models does not 
exist.[42] A combination of these two effects could 
thus easily explain as much as 1.5 out of the dis- 
crepancy of 1.8. A preliminary conclusion: there 
is an interesting puzzle in this discrepancy. but 
no callse for alarm. 

5. SUMMARY 

Static Potential. 

l At short distances. the potential agrees with 
perturbation theory to a few per cent. 

l The string tension exhibits two loop asymp 
totic scaling to an accuracy of 20%. 
p/A= is in the range 1.55-1.95. 

ti end T systems. 

The hyperfme splitting and leptonic widths 
provide good phenomenological tests of lat- 
tice methods. 

The spin averaged lP-1s splitting provides 
s very good determination of the lattice 
spacing in physical units. Combined with 
a lattice determination of the renormalized 
coupling, it gives a determination of the 
strong coupling constant which at present 
is of comparable accuracy to that of con- 
ventional determinations. When the effects 
of sea quarks are properly included, its ac- 
curacy will be much better than any current 
determination. 

Technical developments. 

Lattice perturbation theory works very well 
when renormalized coupling constants are 
used. 

Minor changes to the actions of Wilson and 
of NRQCD may make it possible do cal- 
culations with a unified formalism at any 
value of the quark mass. as long as the 
three momentum is small. This will imply a 
reinterpretation of calculations with Wilson 
fermions at large quark mass. 
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A. NOTATION 

We use the forward, backward, and symmetric 
finite difference operators 

A:& = CJn,p+n+,~ - tin, (19) 
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A;& 2 till - U;+.r*.l-O, (20) 

A,& = 
A:+A; 

2 *n. (21) 

The analogous continuum covariant derivative is 
denoted 

DP (22) 

The standard relation between the bare mass 
mo and the hopping parameter K is 

1 
mo s z - 4. (23) 

When considering nonrelativistic fermions, we 
decompose the four-component Dirac field as two 
two-component fields 

*= ; , ( > (24) 

and take as our representation of the Euclidean 
gamma matrices 

YO=(; -“l), Yi=(ji ;). (25) 

B. RESULTS FROM LATTICE PER- 
TURBATION THEORY 

This section summarizes results from Ref. [30] 
which have been used in the text. 

B.l. A sequence of improved coupling con- 
stants 

In Ref. [43] (1990) it was argued that lattice 
perturbation series are much more convergent and 
agree better with Monte Carlo data if they are 
expressed in terms of a physical running coupling 
evaluated at a carefully chosen scale. A good one 
is UV, the one defined by the static quark poten- 
tial: 

1 
- = 
w(u) 

& + 40 ln( ;) - 4.702. (26) 

The arguments were analogous to those leading 
from the MS to them scheme in dimensionally 
reguiarized QCD. 

In Ref. [18] (1991) it was noted that the hulk of 
the correction coefficient in the previous equation 
is accounted for by a simple mean field argument. 

The coupling constant is enhanced at one loop 
by a coupling to the expectation value of the pla- 
quette induced by the higher order terms in the 
Wilson action. Higher order analogues of this one 
loop effect certainly exist. This suggests that an 
effective coupling constant which incorporatea a 
Monte Carlo calculation of the plaquette expec- 
tation value, such as 

1 (T*W 
ov(Q)=- QlOl 

+ D-0 I”($) - 0.513, (27) 

may yield improved accuracy. 
Over the past year (1992) we have tested this 

assumption by calculating a variety of short dii- 
tance quantities using the mean field improved 
coupling constant and by Monte Carlo.(30] We 
found that, while using Eq. 27 significantly im- 
proved agreement between perturbation theory 
and Monte Carlo, the Monte Carlo results tended 
to be systematically slightly higher then the per- 
turbative results. This suggests that a coupling 
defined directly from any of the Monte Carlo cal- 
culated quantities would yield improved predic- 
tions for the others. A particularly simple one ia 
the coupling defined from the log of the plaquette: 

1 
-!- - 1.19 

av(3.41/a) = (Ilfl 
4n s - 

3ln(fTr(U)) - l.19 
08) 

(The scale of the running coupling arises from an 
estimate of the typical momenta of gluons in the 
calculation of the logarithm of the plaquette.[30]) 

B.2. Mean field improvement of operators 
The mean field argument leading to Eq. 27 may 

be summarized as follows. The naive classical 
relation between the lattice and continuum gauge 
fields 

U,,(z) s eiogA”‘=) -+ 1 + iagA,(z). (29) 

is spoiled by tadpoles arising from the exponential 
form of the lattice representation of the gauge 
fields. Quantum fluctuations do not lead to an 
average link field close to 1.00000 as implied by 
Eq. 29, but to something more like 

U,(z) - UCI (I+ iagA,(z)), (30) 
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where uo, a number less than one, represents the 
mean value of the link. In a smooth gauge, the 
Monte Carlo link expectation value can be used 
as an estimate of uo. A simple, gauge-invariant 
definition is 

110 E (~lw,,,)“‘. (31) 

Other definitions based on IC= or the static quark 
self-energy may be used to fine tune mean field 
predictions in particular situations. 

If naive d&&ions such a Eq. 29 are used 
to relate lattice and continuum operators, large 
corrections will appear in quantum corrections. 
Much better behavior of loop corrections is ob- 
tained by taking u,,(z)/uo as the lattice approxi- 
mation to the continuum field. This implies that 
the lattice action 

3 &on = c -&R(U,I, + h.c.). (32) 

will approximate closely the desired continuum 
behavior. This is the usual lattice action if we 
identify 

4 
9 = g:e,/4 = !3:.l/(~wJPl,)). (33) 

The perturbative result, Eq. 27, explicitly verifies 
that g* is a closer approximation to a standard 
continuum expansion parameter than gr?,, is.1441 

The same considerations lead to the result that 

iGKU0 (34) 

produces a more continuum-like bare mass (ti = 
& - 4) and smaller quantum corrections in oper- 
ator renormalizations than does X. 

Mean field arguments may be used both to es- 
timate perturbative predictions when the pertur- 
bative predictions are unknown. and also to im- 
prove known predictions. Just as we did with 
the coupling constant in Eq. 27, we can improve 
perturbative predictions for operators involving 
quark fields by substituting the Monte Carlo cd. 
culation of uo in Eq. 34 and including in the 
perturbative prediction only that part remaining 
after the absorption of ILO into K. A possible fine 
tuning in this case is to obtain un from K(, rather 
than from the plaquette. This was the procedure 
used in obtaining Eq. 7. 

The cloverleaf approximations to Fpy used in 
the Wohlert-Sheikholeslami O(a) correction to 
the Wiion action (251 and in the magnetic spin 
coupling of NRQCD Ill] contain four links each. 
The quark wave function normalization containa 
one link. We therefore expect the naive coeffi- 
cient of this operator to undergo quantum COT- 
rections of roughly a factor of ur3, or about 
1 + 0.259’ if we use the plaquette to estimate 
“0. This is in agreement with an unpublished 
thesis calculation of Wohlert, 1 + 0.27g2.[45] Us- 
ing the plaquette calculated by Monte Carlo to 
estimate the correction term yields a factor of 
(fTrW’p~,))-“’ - 1.4 - 1.5 for /3 around 6.0. 
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